We all know that chameleons change color. But there is another marine master of disguise that you might not know about–the cuttlefish. This animal can change its skin with more variety and much faster than a chameleon. The secret has to do with how it communicates to tell its body to change.

The chameleon sends signals through its bloodstream to tell the body to camouflage. However, the cuttlefish sends electrical signals using its nervous system, which is much faster. By the time a chameleon has changed once, a cuttlefish has changed four times.

The reason for the cuttlefish’s ability to have such a diverse range in camouflaging is that it skin is made up of three layers. The first layer can change to warm colors, the second layer can change to all the others, the third layer can turn white. The combination of all those layers allows the cuttlefish to change to any color, plus patterns.

Here is a video for you to se for yourself (courtesy Roger Hanlon):

Fabrics are an old invention and have been important to us since ancient times. We choose different fabrics for their comfort or protection or both. For example, cotton absorbs moisture. And, this is a good thing, because the body doesn’t like wetness right next to the skin. The wetness feels clammy and it is very uncomfortable.

But in this age of technology, textiles will do more than make us comfortable. They will give us information, because they will have small bits of electronics embedded in them.

In fact, companies are now making wearable technologies to help NFL coaches monitor athletes by tracking their heart rate and their oxygen intake.

So when might you see smart shirt at your local store?

Well, engineers are working on them now. Ends up that a shirt is the worst place for electronics. Wearing a shirt or washing a shirt are demanding environments for any kind of electronics. They are the opposite of what electrical components prefer. Electronics like to keep dry and not bend.

These are major challenges engineers are solving right now. It seems in the future, we might need to charge our shirts. Or at least carry extra batteries.

Ben Franklin went out one stormy night with a kite and found out that lightning is electricity. Well, lightning has a few other tricks up its sleeve. Lighting makes magnets that are called lodestones.

Lodestones have been part of civilization for thousands of years, since the early compasses, which allowed us to reach new corners of the earth. And, the unusual origin of lodestones has been known for decades. The first clue that these stones were otherworldly was that they are only found on the surface of the earth. If you dig deep into a mine, you won’t find lodestones.

Dr. Peter Wasilewski, a retired NASA scientist, who made a living playing with lightning had this to say, “The thing about the lightning bolt, besides being magical, is that it has a magnetic field associated with it.”

Lightning changes the stone by providing a big magnetic field. One can demonstrate this by rubbing a needle with a magnet. That needle will be a magnet for a short time. Well, the lightning and lodestones undergo a similar process but on a larger and supernatural scale.

So, how do you coax lightning to strike a stone?

Wasilewski created lodestones using lightning in much the same way as Ben Franklin did, but with tools that are much more expensive. To make a lodestone, first he had to go where there is lots of lightning. Summertime months in places like Florida and New Mexico are hotspots for strikes.  Then, he needed a better “kite.” Wasilewski replaced Franklin’s contraption with a small bottle rocket that he launched into storm clouds. Attached to this rocket was a three-mile long metal wire fastened to a plastic box. Inside the box was a bed of sand, and the soon-to-be-zapped rock sat on top.

The experiment happens in a flash and everything melts or burns, since the lightning heats everything to over 2,900°F.

And the rock in the box? It’s a magnet now.

That’s a very striking difference!

 

There have lots of news about various pandemics. The first line of defense is a camera, a thermal camera.

When someone is sick, they usually have a temperature. Here is where the camera comes it. Thermal cameras can “see” if someone has a fever because these cameras can detect the heat. Thermal camera detect the heat, which comes off as infrared.

 

Twenty years ago, there were 1 billion monarch butterflies migrating 3,000 miles from the US to Mexico. Today, there are only 35 million! If you don’t want to do the math, that is less than 10 percent around now compared to what was around when the Spice Girls were big.

So what happened? Well, a weed that the monarch butterflies (and caterpillars) eat started to go away, and along with this weed went the monarchs.

Monarch butterflies feed on milkweed. Twenty years ago, milkweed grew quite a bit. But, with the development of crops that can resist herbicides, farmers sprayed and sprayed killing off the milkweed. When there is no milkweed, there are no monarchs.

Monarchs are a majestic species and one of the last animals we know that proceed with a great migration. American Bison (also known as the buffalo) use to migrate long distances, but they were virtually exterminated. Carrier pigeons used to migrate, but they are not around any more either. So, here we are facing another extinction of an animal, but there is something that we can all do to stop the monarchs from going away forever.

One thing you can do is stop mowing your lawn. Yes, you read that right. If you don’t mind a few wild flowers, why not add milkweed to the mix.  There are places that will give you free milkweed seeds.

Cities can stop mowing around power lines and underpasses that need not be well manicured. Here, milkweed can grow and give monarchs something to dine on too.

What is clear is that all of us can make a difference and bring these beautiful creatures back to a robust population.  We often hear about butterfly effects, but this time we can have an effect on butterflies.

Happy non-mowing!