Everyone loves fireworks.  Fireworks are quite old. The oldest form of fireworks was a firecracker from 7th century China, now we can make complex shapes like planets and clown faces.

So what gives the colors in fireworks?

There are a few elements at work. Barium, strontium, copper, and sodium make the colors green, red, blue, and yellow.  Aluminum and titanium make white; and carbon makes yellow.

So as you can see, fireworks are a explosion of color and chemistry.

Star Trek has lots of cool technologies that have become a reality. There are invisibility cloaks and Tractor beams being made right now. And cellphones are like communicators and replicators are 3D printers. But, what we could all use is a transporter. This way we would not need to drive or go to an airport, we could just beam over to where we need to go and come back. Sounds wonderful!

Well, I spoke to physicist Lawrence Krauss, who is also the author of The Physics of Star Trek. He told me that a transporter takes us apart bit by bit. “In order to make you you, we need to put you back together atom by atom,” said Krauss. That sounds easy. But there is some bad news. There is a law in physics, in quantum mechanics, that tells us that the more we know where an electron is located, the less we know about how fast it is going. This is called the Heisenberg Uncertainty Principle.

To build a person atom by atom, we would need to know where each atom goes and how fast it is moving. But quantum mechanics says that we can’t know both of those things well. We can know one well, but not the other. So making a transporter would break the laws of physics.

Getting into a transporter would be a one-way trip. You might not like how you turn out.

So the short answer for “can we make a transporter?” is, “no.” We would be breaking the laws of physics to do so. And, we mustn’t do that.

No picnic would be perfect without ketchup. But ketchup has this habit of taking its sweet time when leaving the bottle.

There are several ways to get ketchup out of the bottle.

  • Stick a knife in it and scoop it out.
  • Hit the bottle at the neck (where the 57 is located).
  • Skip it and use mustard instead.

But there is a better, scientific way:

Shake the bottle.

Ketchup is made up of tomato pieces, water, vinegar and spices. And, it is the arrangement of the tomato pieces that give ketchup a structure and cause the flow of ketchup to slow down.

Scientists would call ketchup a thixotropic yield stress liquid. The yield stress part means that it takes force for the ketchup to move. This is why we have to hit the bottle to get it out. The thixotropic means that the ketchup has the ability to “remember.”

Once someone has used the ketchup bottle, the ketchup inside “remembers” it and will flow faster afterwards. This means that the second person that gets the ketchup bottle will have an easier time getting the ketchup out then the first person to use it.

What is going is on is that the tomato particles in the ketchup get rearranged after the first use and can easily flow passed each other the second time.

So how do you get ketchup to flow faster? If you are the first person with the ketchup bottle, then shake it. But, if you are the second person, don’t worry; you won’t have long to wait. The ketchup will flow real easily.

So, next time you are at a picnic, let someone deal with the ketchup bottle first. It is polite and scientifically a better way to reduce the wait.

 

Something is happening to honeybees! They are turning into zombie bees, or zombees.

There is a tiny fly that is injecting its eggs into the honeybee along with a parasite, and the parasite is taking over the honeybees’ behavior.  The bees fly around erratically and walk around awkwardly. You can say that it is the flight of the living dead.

Scientists are asking all of us to look out for bees that act strangely and report these sitings on their website: Zombeewatch.org. If you see something, say something. So far zombie bees have been found on the west coast in California and Washington state and on the east coast in Pennsylvania and Vermont.

Honeybees are important to us because they pollenate many of the fruits, nuts, and vegetables we enjoy. Without honeybees, there would be no honey too. Americans eat over 400 million pounds of honey every year.  If bees go away, we will need to eat foods that are wind pollenated like corn and wheat.

Honeybees make our lives a bit sweeter and here is one way all of us can help to keep them buzzing.

Ben Franklin went out one stormy night with a kite and found out that lightning is electricity. Well, lightning has a few other tricks up its sleeve. Lighting makes magnets that are called lodestones.

Lodestones have been part of civilization for thousands of years, since the early compasses, which allowed us to reach new corners of the earth. And, the unusual origin of lodestones has been known for decades. The first clue that these stones were otherworldly was that they are only found on the surface of the earth. If you dig deep into a mine, you won’t find lodestones.

Dr. Peter Wasilewski, a retired NASA scientist, who made a living playing with lightning had this to say, “The thing about the lightning bolt, besides being magical, is that it has a magnetic field associated with it.”

Lightning changes the stone by providing a big magnetic field. One can demonstrate this by rubbing a needle with a magnet. That needle will be a magnet for a short time. Well, the lightning and lodestones undergo a similar process but on a larger and supernatural scale.

So, how do you coax lightning to strike a stone?

Wasilewski created lodestones using lightning in much the same way as Ben Franklin did, but with tools that are much more expensive. To make a lodestone, first he had to go where there is lots of lightning. Summertime months in places like Florida and New Mexico are hotspots for strikes.  Then, he needed a better “kite.” Wasilewski replaced Franklin’s contraption with a small bottle rocket that he launched into storm clouds. Attached to this rocket was a three-mile long metal wire fastened to a plastic box. Inside the box was a bed of sand, and the soon-to-be-zapped rock sat on top.

The experiment happens in a flash and everything melts or burns, since the lightning heats everything to over 2,900°F.

And the rock in the box? It’s a magnet now.

That’s a very striking difference!

 

Dogs bark. Cats meow. Ducks quack. These noises might not seem like much to us, but animals are communicating.

We’ve been intrigued with communicating with animals since the classic movie Dr. Dolittle from the 1960s and the revamped version of this movie in the 1990s with Eddie Murphy. But, scientists have been studying animal language for much, much longer and have found that animals have a full vocabulary with verbs, nouns, and adjectives. Animals can alert other animals of predators by stating what the predator is, what it looks like, and how fast the predator is running.

But the fascinating part about animal language is time. Animals with longer lives tend to speak at longer and more drawn-out paces than animals with shorter lives and faster speech. For instance, a prairie dog speaks in chirps, but if you slow down those chirps, they sound like human speech. Prairie dogs live for a three to five years.  On the other end, whales live for decades and speak for whole minutes. If you speed up their speech several times, it sounds like a human speaking.  There seems to be some correlation between the length of life and how long an animal speaks.

All this is to say it that the chirps or barks you hear are full of compressed information. And, to quote Bonnie Raitt, that is “Something to Talk About.”

Find out more about animal language here:

Chasing Dr. Dolittle by Con Slobodchikoff

 

And this year’s Oscar goes to .   .    .   chemistry.

On that wonderful night in LA, the red carpet is full of celebrities and fans all eager to hear who wins the gold statue.  However, the Oscar statue isn’t pure gold. That would be extremely expensive.  The Oscar is actually a bronze statue that is coated with gold.

So how does the Oscar become, well, an Oscar?

To understand we have to think about frog’s legs.

In the late 1700s, Luigi Galvani, who was a professor of anatomy in Italy, was dissecting frogs using a metal scalpel and a copper clamp. He noticed something: The frog’s legs twitched like they were alive! He repeated this a couple of times and they twitched every time.

He found something amazing and called it animal electricity. That is the animal had some supernatural life force inside of it. Galvani wrote up his results and all of Europe embraced this idea.

But, on the other side of Italy was a physics professor named Alessandro Volta. He believed in Galvani’s idea at first, but began to think it was the two different metals that caused the legs to twitch. Volta recalled an earlier experiment by another scientist who had put his tongue between two different coins, and it created a terrible taste. Ends up, that  the two metals next each other in a liquid (saliva, in this case) started a chemical reaction.

So with this old experiment in the back of his mind, Volta made sandwiches of two different metals and put them in a jar full of saltwater. Then, he connected wires from this stack of metals to the frog’s legs. They twitched.

What Volta showed is that two different metals together make electricity. He made a battery.

In a battery, electricity flows from one metal to the other.

But what does this have to do with the Oscars?

Well, in order for electricity to flow in a battery in one direction, there has to be metal flowing in the opposite direction.  If you were to look at the metal under the microscope you would see that a metal coating is starting to form.

So to make an Oscar this coating process is taken to a much bigger level.  The bronze statue is put in a huge chemical tank that has microscopic gold floating in a liquid. Electricity is attached to the statue and the gold particles become attracted to the statue and start to coat it. After a really long time in the tank, the statute becomes the beautiful icon we know today.

So, if you enjoy the Oscars, and many do, you really have frog’s legs to thank.

References:

Luigi Galvani: Bern Dibner

How the Oscar Got a Facelift this Year

How Frog Legs Helped Make the Oscars Possible (Video)

Snowflakes reflect light like a mirror to create their white color.

Liquid water is clear, but snow is white. Why is that?

Well, the snow crystals have many surfaces at different angles and each one of these surfaces acts like a tiny mirror which bounces back the light.  So, the white color you are seeing is actually the light that is being reflected.  The light bouncing off the surfaces contains all the colors of the rainbow combined together, to make white light.  This white light lands on a snow crystal’s surface and then reflects back off, like a flashlight beam on a mirror.

This act of bouncing light is what scientists would call scattering. The surface of the snowflake scatters  light in many directions, causing us to see the white color.  In an earlier podcast, we learned why snow has six sides. Snow is a crystal, with facets just like a diamond. Each one of these facets bounces light back to give it the color we see.

Now, snow is not the only thing that bounces light back. Water droplets can scatter light back too. This is why clouds, steam, and fog look white.

So, the colors you see, well, they  are just the surface.

 

 

 

 

 

There is lots of news about CTE or chronic traumatic encephalopathy. CTE is a brain disease, a neurological degenerative disease that is caused by repetitive hits to the head. The symptoms include dementia, memory loss, and depression. In the early twentieth century, this condition was called “punch-drunk” and was found in a number of boxers who ultimately were found to suffer from dementia. No cure for CTE is currently known, and at present it can only be identified postmortem.

Here is an excerpt from Newtons Football (Affiliate Link), which describes where doctors are:

In the field of head injuries, scientists have a lot to try to understand as they parse the puzzle of concussions and the related long-term degenerative brain disease known as chronic traumatic encephalopathy, or CTE.
Just how does a concussive impact impair the function of the brain?

“You’ve got this metabolic crisis going on within the cell,” posits Robert Cantu, a professor of neurology at Boston University, as potassium ions flood out of the nerve cell, replaced by calcium ions, which prevent the cell from passing on information.”

Is there a genetic component to concussions and CTE?

“No one knows yet, but studies are focused on a variant of a common lipid transport gene called ApoE-e4. This gene does good things making sure fat goes to the right place,” says Robert Stern, a professor of neurology at Boston University, “but if you have the wrong form it does something crazy in the brain.” He adds that “it is a susceptibility gene, as opposed to a deterministic gene. If you have the wrong form, it increases your risk of having the disease, but it does not mean you will get it,” Stern explains. “There is not going to be a CTE gene because it is such a multifaceted disease.”

 

Newtons Football (Affiliate Link)

The secret to the snowflake’s shape can be found in a stack of oranges.

If you go over to the grocery store and head over to the produce section, you’ll find that oranges are stacked up in a way that each orange is touching six other oranges. This arrangement is called a hexagon–it has six sides.  Honeycombs have this hexagonal shape. So do bath tiles.

Oranges in a hexagon shape

Oranges are arranged so that each orange touches six other oranges–a hexagon. Source: Shutterstock

Water molecules stack up just like the oranges, which is why snowflakes have six points to them.  The water molecules collect on a small piece of ice or dust in a cloud and build out just like the oranges to create 6 sides. It takes about 100,000 water droplets to eventually make one snowflake.

What you might not know is that snowflakes have other shapes too.  One looks like a spool of thread, another looks like a pencil. Scientists are still trying to find out how each is made.

Where there is no mystery is how beautiful snowflakes are and how much collaboration it takes for water molecules to create a flake that lands on your tongue.

Find you more about snowflakes here (Affiliate links):

Snowflakes by Ken Libbrecht (featured in the podcast)

Snowflakes in Photographs (picture book of real snowflakes)

Snowflake Bentley (The man who photographed snowflakes)